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Abstract

A high-angle-of-attack flush airdata sensing system was
installed and flight tested on the F-18 High Alpha Research
Vehicle at the NASA Dryden Flight Research Facility. This
system uses a matrix of pressure orifices arranged in concen-
tric circles on the nose of the vehicle to determine angles of
attack, angles of sideslip, dynamic pressure, and static pres-
sure as well as other airdata parameters of interest. Results
presenied use an arrangement of 11 data ports distributed
symmetrically on the aircraft nose.

Experience with this sensing system data indicates that
the primary concern for real-time implementation is the
detection and management of overall system and individ-
ual pressure sensor failures. The multiple port sensing
system is more tolerant to small disturbances in the mea-
sured pressure data than conventional probe-based intrusive
airdata systems. However, under adverse circumstances,
large undetected failures in individual pressure ports can re-
sult in algorithm divergence and catastrophic failure of the
entire system.

This paper demonstrates how system and individual port
failures may be detected using x? analysis. Once identified,
the effects of failures are eliminated using weighted least
squares. Background on the HI-FADS hardware, the aero-
dynamic model, the nonlinear regression algorithm, and x?
analysis are presented. Failure detection and fault manage-
ment techniques are developed and data obtained from the
High Alpha Research Vehicle flight tests are used to demon-
strate the techniques.
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o angle of attack, deg

B angle of sideslip, deg

r Gamma function

ol probability distribution degrees of freedom

&P HI-FADS residual

€ HI-FADS calibration coefficient

6 port incidence angle

A HI-FADS cone angle

U residual mean

3 number of parameters estimated from
HI-FADS data

z summation operator

oa standard deviation of HI-FADS residuals

@ high-angle-of-attack flush airdata sensing
clock angle

x* random variable distributed according to
“chi-square”

P estimate of chi-square variable

Introduction
Increasingly, flight system designs for advanced

aerospace vehicles are requiring the availability of accurate
and high-fidelity airdata values such as angle of attack (a)
and Mach number (M). For hypersonic vehicles like the
National AeroSpace Plane (NASP), accurate airdata mea-
surements are required for engine airframe integration. Be-
cause of the hostile hypersonic environment, conventional
intrusive airdata systems would not survive on the NASP
vehicle. For stealth vehicles such as the B-2 flying wing,
direct feedback from the airdata system is used for vehicle
control. Again, because of low observability requirements,
conventional intrusive airdata measurement systems cannot
be used. For high-angle-of-attack vehicles, a conventional
noseboom installation would alter the basic flow character-
istics of the aircraft nose and may adversely affect aircraft
performance. As a means of circumventing these difficul-
ties, the flush airdata sensing (FADS) system concept was
originated at the NASA Langley Research Center and devel-
oped and flight tested at the NASA Dryden Flight Research
Facility (DFRF).

Several FADS demonstration programs have been per-
formed. Early programs conducted on the KC-135 and F-14
vehicles were intended only to demonstrate the feasibility of
the concept and did not attempt to derive algorithms capable
of operating on a fully redundant flight system.!? Instead,
the emphasis of these flight programs was on measurement
and presentation of individual pressure coefficient data and
their empirical relationships to Mach number, dynamic pres-
sure, and flow incidence angles. The shuttle entry airdata
sensing (SEADS) system demonstrated the feasibility of the
FADS concept at hypersonic speeds.?

A more advanced program demonstrated the feasibil-
ity of using a high-angle-of-attack flush airdata sensing
(HI-FADS) system for research flight measurements. This
program concluded during phase 1 of the F-18 High Al-
pha Research Vehicle (HARV) flight tests at NASA DFRF.
The HI-FADS design is an evolution of the earlier nonin-
trusive systems and emphasized the airdata algorithm de-
velopment with composite results expressed as airdata esti-
mates instead of raw pressure values. The HI-FADS sys-
tem provided the opportunity to research various appli-
cation techniques for FADS as vehicle or mission-critical
flight systems. The HI-FADS system incorporated an over-
determined algorithm in which surface pressure observa-
tions operated simultaneously to infer the airdata parameters
using nonlinear regression. Excellent results were achieved
for flights conditions up to @ = 55 and M = 1.20. Standard
errors were empirically determined to be approximately
one-half degree in angle of attack and angle of sideslip, and
better than 0.004 in Mach number. References 4, 5, and 6
contain preliminary results of these flight tests.

The nonlinear regression algorithm from phase 1 of the
HARYV flight tests was shown to be insensitive to small dis-
turbances in the measured pressures, but because of the non-
linearity of the HI-FADS model, the algorithm is not robust
1o large sensor errors. For example, these errors are caused
by failed sensors and blocked ports. Divergence and com-
plete system failure may occur if large errors are input to the
algorithm without using divergence protection and regres-
sion. Thus, a primary concern for real-time implementation
is failure detection and fault management of sensor failures.

For the algorithm to be divergence-safe, a criterion for
identifying system failure and imminent algorithm diver-
gence must be developed. Using this criterion, failed pres-
sure observations can be weighted out of the algorithm be-
fore divergence becomes a problem. Studies on the HARV
HI-FADS data indicate that using the regression algorithm
bad observations are weighted out of the algorithm, good
airdata results can be achieved with as little as seven obser-
vations. Thus, for sensing systems with more than seven
sensors, one or more failures can be tolerated at a given
data frame.

This paper demonstrates how total system and individual
measurement failures can be identified using x? analysis of
the pressure measurement residuals. Techniques for mak-
ing the algorithm tolerant to pressure sensor failures using
weighted least squares will be developed. Background on
the HI-FADS systems, nonlinear regression, and x? anal-
ysis will be presented. Data derived from HI-FADS flight
tests will be used to demonstrate the concepts presented and
methods developed.

The failure detection and fault management techniques
were developed to support the immediate needs of a real-
time flush airdata sensing (RT-FADS) system. This flight-
test demonstration program is in the planning stages and is a



collaborative effort between NASA DFRF, McDonnell Air-
craft (McAir, St. Louis, Missouri), and Honeywell Inc. (St.
Louis Park, Minnesota). The effort secks to demonstrate
in real time the capabilities of a FADS system onboard the
DFRF Systems Research Aircraft (SRA), a 2-seat FA-18b.
The RT-FADS system is based on the HI-FADS architecture,
but airdata computations will be performed in onboard pre-
cessors. The evaluated airdata will be displayed to the pilot
and telemetered to ground in real time,

High-Angle-of-Attack Flush Airdata
Sensing System

Hardware

The HI-FADS configuration has a simple hardware ar-
rangement with the basic fixture being a fiberglass rein-
forced plastic cap mounted on the nose of the F-18 HARV.
Twenty five 0.06-in. diameter pressure orifices arranged in
4 annular rings were drilled in the nosecap. Flight tests con-
ducted during phase 1 of the HARV program indicated that
airdata could be satisfactorily measured using a subset of
the 25 pressure ports. All results presented in this paper
use 11 ports symmetrically distributed about the nosecap.
Early HI-FADS flight tests indicated that satisfactory airdata
results can be achieved using as little as 7 pressure mea-
surements, therefore, this formulation used 11 ports to al-
low for up to 4 pressure failures at any given data frame.
Quad-redundancy (in terms of pressure measurements) is
thus achieved.

The locations of the nosecap ports were defined using
clock and cone angle coordinates measured relative to the
nosecap axis of symmetry. The cone angle ()) is the total
angle that the normal to the surface makes with respect to
the nosecap axis of symmetry. The clock angle (¢) is the
clockwise angle looking aft around the axis of symmetry
starting at the bottom of the fuselage. Figure 1 illustrates
the definitions of the clock and cone angles as well as the
pressure ports locations. Table 1 lists the coordinate angles
of the various pressure ports used in the 11-port analysis.

Table 1 HI-FADS pressure port locations

Port# Clock angle, deg  Cone angle, deg

1 0.0 0.0
0.0 20.0

3 180.0 200
4 0.0 35.0
5 90.0 55.0
6 180.0 55.0
7 270.0 55.0
8 45.0 60.0
9 135.0 60.0
10 225.0 60.0
11 315.0 60.0

Pressures at the nosecap were sensed by a multiple trans-
ducer, electronically scanned pressure (ESP) module, re-
motely mounted in the aircraft nose cavity. Pressures at the
surface were transported to the ESP module using lengths
of flexible pneumatic tubing. Analyses performed in refer-
ence 6 indicate that the pneumatic tubing did not introduce
any significant distortions in the measured pressure values in
the bandwith of interest (0-20 Hz). The ESP module, which
consists of differential transducers, was referenced to a sin-
gle, high-accuracy absolute pressure transducer mounted in
the aircraft nose cavity. High-frequency dynamics in the
reference pressure were attenuated by a damping tank also
mounted in the aircraft nose. The temperature environments
of both the ESP module and the reference transducer were
controlled by wrapping the units in heater blankets to main-
tain a constant operating temperature. All HI-FADS pres-
sure data were digitally encoded onboard using a 10-bit
pulse code modulation (PCM) system and telemetered to
ground where selected pressures were displayed in real time.
All HI-FADS data were recorded at 25 samples/sec. for post-
flight analysis. More detail concerning the HARV flight-test
program and HI-FADS system hardware may be found in
Ref. 4, 5, 6, and 7. A schematic of the HARV HI-FADS
system is shown in Fig. 2.

Aerodynamic Model

Measured pressure data are related to airdata state pa-
rameters by way of a nonlinear aerodynamic model de-
rived from potential flow in reference 4. The model pre-
scribes measured pressure in terms of four airdata param-
eters: dynamic pressure (g.), angle of attack (@), angle of
sideslip (8), and static pressure (P,,). Using these four basic
airdata parameters, most airdata quantities of interest may
be directly calculated. For a given pressure observation

P(¢i,)) = g [cos®(8) + esin?(6)] + P (1)

where ¢; and ); are the clock and cone angles of the i’th
pressure port, £ is a calibration parameter which varies as a
function of M and «, and 6; is the incidence angle between
the surface and the velocity vector. The incidence angle is
related to the local o and B by

¢0s(6;) = cos(a) cos(B) cos( ;)
+ sin(B) sin(¢;) sin(X;)
+ sin(a) cos(B) cos(¢;) sin(\;) 2)

Here « and 8 are not corrected for aircraft induced upwash
and sidewash. As with conventional intrusive airdata sen-
sors, independent calibration must be done for the aircraft
induced measurement errors, Techniques for calibration of
the indicated « and B are described in detail in Ref. 4.

Nonlinear Regression Algorithm

Although the pressure model is accurate in relating the
airdata parameters to the measured pressure data, it is non-
linear and cannot be directly inverted to give airdata as a



function of the measured pressures. Instead, for each data
frame, the pressure measurements are used as indirect ob-
servations and the airdata parameters are estimated using a
weighted nonlinear least-squares regression. Within each
frame, the algorithm is linearized about a starting value and
all pressure data are used simultaneously to evaluate the
least- squares perturbations about the starting value. Within
each frame, the algorithm is iterated until convergence. At
the beginning of each new data frame the system is relin-
carized about the result of the previous frame, and the itera-
tion is repeated using new pressure data, thus the algorithm
is time-recursive as well as iterative. This recursive, iter-
ative, and overdetermined (more observations than states)
structure makes the algorithm stable and robust to small per-
turbations in the measured pressure data.

Algorithm Divergence

Difficulty with the nonlinear regression algorithm oc-
curs when a large disturbance such as a data spike or bit-
dropout occurs in a measured pressure value. Recall that
the HI-FADS algorithm is nonlinear; consequently, one true
minimum and multiple false minima will exist. If a large
disturbance is undetected and not weighted out of the re-
gression, the resulting state perturbation may dump the al-
gorithm into a node which converges to a false minimum,
At this point the algorithm will compute nonsensical results
or may diverge altogether. In any case, once a false min-
imum has been reached, the algorithm will not reliably be
able to return to the true minimum without reinitializing the
algorithm with a new starting condition.

Figure 3 presents a one-dimensional illustration of the re-
lationship between false minima and algorithm divergence.
In Fig. 3, the marker indicates the value of the least-squares
cost index (the sum of the squares of the residuals) for a
given value of the state estimate. When the marker lies at 1,
the algorithm is nondivergent but still needs additional iter-
ations before convergence is reached. When the marker lies
at 2, the algorithm has reached the global minimum and has
converged. If a large pressure deviation were to occur, the
algorithm could be dumped into a false node, (marker 3),
and converge to a false minimum which returns a nonsensi-
cal answer, (marker at 4).

Algorithm Initialization

For the regression algorithm to begin computations, a rea-
sonable initial estimate of the airdata parameters must be
available. For the HI-FADS algorithm, this initial estimate
is provided by strategic manipulation of pressure “triples,”
which allow the « and 8 to be explicitly solved for. This
computation, referred to as the “triples” algorithm, tends
to be noisy and not as robust to data perturbations as the
HI-FADS algorithm; however, it allows a direct computa-
tion of the airdata using only measured pressures and does
not require a starting value. If 0 is evaluated using the triples
values for « and 8, Eq. (1) can be expressed as alinear equa-

tion in terms of ¢, and p.,, and least-squares solutions for g,
and p., can be written in closed form.

The starting airdata parameters are evaluated each time
the algorithm is initialized and the algorithm is iterated to
convergence (typically 4-5 iterations). Once initial conver-
gence is reached, the triples algorithm is no longer used and
the HI-FADS algorithm is operated in the recursive~iterative
mode as discussed earlier. A complete derivation of the
triples algorithm is presented in the appendix.

Methods of 2 Analysis

This section presents a brief review of the methods of x?
analysis, as the failure detection method to be developed is
based on the x> goodness-of-fit test. If a sample of N in-
dependent random data values is taken from a Gaussian dis-
tributed population with zero mean and unit variance, then
the sum of the squares of those numbers is distributed ac-
cording to the so-called "chi-squared" distribution.8

—2
i)

X
2y _
d "’b(")‘/o ST (7]2)

where v = N —1 degrees-of-freedom (DOF) for the distribu-
tion. I"(«/2) is the gamma function evaluated at one-half
of the DOF.

e~ T%dx (3)

In a Gaussian distributed population of random numbers
with mean g, and variance o2, if the sample variance, esti-
mated by

is normalized by multiplying by
(N-1)
o2
then resulting ratio

~1
x? = ﬂg_z_)SZ (4)

is a random number distributed according to x2. For num-
bers selected from a completely independent population,
the x? parameter will have N — 1 DOF. If the members
of the population are related by ¢ parameters which have
been estimated from the data, the DOF is reduced by ¢, i.e.,
y=N-¢~1.

Thus, if a small subset is taken randomly from a Gaussian-
distributed population whose mean and variance are known,
and the sample variance is evaluated for that subset, then
the odds of randomly selecting that subset are readily eval-
vated using the x? distribution. As demonstrated in the
following HI-FADS Failure Detection and Fault Manage-
ment Techniques section, this feature is particularly useful in
least-squares problems for evaluating the accuracy of curve-
fits. The x? test is completely reliable and for small sam-
ple populations, statisticians regard this test as the singularly
most reliable goodness-of-fit test available.®?



High-Angle-of-Attack Flush Airdata Sensing
Failure Detection and Fault Management

At the beginning of each iteration, the HI-FADS algo-
rithm linearizes the aerodynamic model about the result
from the previous iteration. The first step of this lineariza-
tion is the evaluation of the residuals betwecn the mea-
sured pressure data, and the HI-FADS model predictions for

each port

8PI*! = P — F/(a,B,qo0, Poos Xy $3,8),i= 1,... N
(5)
Here, 1 is the port index and j is the iteration index. These
residuals are observations from which the least-squares re-
gression algorithm estimates the optimal perturbations to the
state parameters.

For a given data frame, the HI-FADS residuals represent
a small subset of a larger random population. The statisti-
cal properties of this population may be empirically evalu-
ated using large samples of converged airdata. If asmoothed
histogram of the residuals (divided by dynamic pressure to
scale the magnitudes) for a large data set is evaluated, the re-
sult is a family of approximately zero-mean, Gaussian prob-
ability density curves. The variances of these curves are
proportional to angle of attack. These density curves are
computed empirically using nonfailed HI-FADS flight data.
Figure 4 shows the sample variances plotted as a function
of angle of attack for this family of curves. These sample
variances, evaluated using nearly a half-million data frames
from multiple flights, represent the true population statistics.
Data in which visual inspection determined that the airdata
computations were not converged were excluded from this
sample set. If the individual distributions for the various an-
gle of attack regions are normalized by the sample-variance
values taken from Fig. 4, then the distributions reduce to
a single probability density curve very close to the stan-
dard zero-mean, unity-variance Gaussian probability den-
sity curve. This comparison is presented in Fig. 5.

Figure 5 gives clear evidence that the individual resid-
uals are Gaussian distributed. Therefore, for a given data
frame, the sum-square of the scaled-residuals (divided by
the variance) should be distributed as a x? variable with
N — 6 DOF. The DOF are reduced by 5 because the resid-
uals are related by 5 parameters which have been computed
from them. These parameters are the airdata states, g, o,
B, and P,,, and the calibration parameter, £. For the case of
11 ports, this would give a distribution with S DOF. The HI-
FADs residuals behave according to this distribution. This
is verified by evaluating

(6)

at the beginning of each iteration, and plotting a large sample
histogram of the resulting values. In Eq. (6), the variance,

ol , is evaluated using the data of Fig. 4. The %2 histogram

data are presented in Fig. 6. The theoretical and empirical
density functions are in close agreement.

The residual statistics were evaluated using only con-
verged airdata values. Evaluating %* at the beginning of
an algorithm iteration allows the hypothesis for airdata fail-
ure to be observed by comparing the value of x* against
percentage points of x? distribution taken from
(4™

1 - Prob(s%) =f Z”
X

ATYE) g 7
—z 2’1/21,(’7/2)6 dr  (7)

The probability of a given value of ¥? occurring without
airdata failure is given by Eq. (7). Since ¥ is a relative
probability indicator depending upon the value of 2, vari-
ous failure detection modes can be initiated. The HI-FADS
flight data indicate that for a small value of %2, the algo-
rithm is near convergence and usually only one additional
iteration is necessary. An intermediate value indicates that
although the incoming pressure data is of reasonable quality,
further iterations are likely required to reach convergence.
A large value of 2 indicates a high probability that some
system failure has occurred and tests on individual pressure
data should be performed.

Based on the relative probability properties of the x? dis-
tribution, the HI-FADS algorithm operaies in three basic
modes. These modes are nominal; in which only one it-
eration is performed at each data frame; iteration; in which
multiple iterations are required to reach convergence; and
fault management, in which individual pressure failures are
detected and weighted out of the regression. Figure 7(a) is a
schematic of the algorithm structure and the transitions be-
tween the various algorithm modes. Each of the algorithm
modes is discussed in detail.

Nominal Mode

IfEq. (7) is evaluated for ¥* = 1.61, a 90-percent (S DOF)
probability results and indicates a significant likelihood that
no airdata failure has occurred. In fact, experience with
HI-FADS data indicates that for low values of 2 the al-
gorithm is near convergence and only one iteration for each
data frame is necessary. This one iteration per data frame is
the nominal mode for the algorithm and corresponds to the
location of marker 2 in Fig. 3. The nominal mode is the reg-
ular operation mode of the algorithm and allows the fastest
data throughput. For a 5-DOF system, the nominal mode
is implemented as long as ¥* < 4.35. The algorithm drops
out of the nominal mode only at high-angles of attack, dur-
ing highly dynamic flight conditions, or when data channel
failures occur.

Iteration Mode

A %2 value of 4.35 corresponds to a probability of ap-
proximately 50 percent, and indicates an equal probability
of algorithm convergence or nonconvergence. Experience
with the HI-FADS data indicates that for intermediate val-
ues of %2, no airdata failure has occurred. However, several



iterations may be required to reach the convergence point.
In this regard, the %> value provides a solid convergence
criterion. This is the iteration mode for the algorithm and
it corresponds to the location of marker 1 in Fig. 3. The it-
eration mode is usually entered at high-angles of attack or
loaded maneuvering and is somewhat slower than the nom-
inal mode. For the 5-DOF system, the iteration mode is im-
plemented when 4.35 < %% < 15.1.

Fault Management Mode

A %? of 15.1 corresponds to a probability of 1 percent and
indicates a high probability of failure in the airdata system.
In this case, some individual channel failure detection and
fault management must be implemented to keep the algo-
rithm from diverging. This is the fault management mode of
the algorithm. The fault management mode corresponds to
the location of marker 3 in Fig. 3. The throughput of the fault
management mode is reduced considerably because testing
on individual pressure values is required for each failed data
frame. For the 5-DOF system, the fault management mode
is implemented when 15.1 < %2.

Fault Management Tests

This section defines the fault management tests imple-
mented when the system has failed the x? test (and the
fault management mode is entered). The x* method al-
lows nominal algorithm operation with little overhead for
fault-detection and serves as an indicator of the overall sys-
tem health. Failure tests on individual ports need to be per-
formed only when a x2 test failure has occurred. A series
of tests are performed when x? failures occur, ranging from
simple to complex and computationally intensive. For the
HI-FADS algorithm, four tests for individual port failures
have been implemented. Figure 7(b) is a detail of the fault
management mode and depicts the transitions between the
various port-failure tests.

The first fault management test is a simple rcason check,
Upon failure of the x? test (¥* > 15.1 for 5-DOF), the
weight of any pressure data value which is less than a speci-
fied minimum or greater than a specified maximum is set to
zero. Data values which lie between the specified minimum
and maximum values are given a weight of 1. The weighted
%? is reevaluated using the new weights

N [é&]z
=3 Qi (8)

and the result is compared against the percentage points of
x? distribution for

N

'7=2Q|‘—6

i=1
DOF. If the corresponding probability percentage is greater

than or equal to 1 percent (the probability at which the fault
management mode is entered) and 4 > 0.0, the algorithm

drops out of the failure testing mode and enters the iteration
mode using the newly assigned weights.

If after the reason test has been implemented, Prob(%?)
< 1 percent or v < 0.0, then the next failure detection test
is performed, a simple three-sigma residual test where the
weights are reassigned based on residual magnitudes. For
each of the data channels, if §p;/q. < 04, then Q; = 1.0
If 04 < 8p/q. < 30, then the weight for that residual
is set to

(1)
Q= -5 -1+
! 2 cg

TR

for3a, < 8p/q. the weight is set to zero. After reevaluating
the weights, the weighted %2 value is evaluated again and
compared against percentage points of x? distribution for

N
’7=EQ5-6
=1

DOE If the resulting Prob(%?) > 1 percentand 4y > 0.0,
the algorithm drops out of the failure testing mode and en-
ters the iteration mode using the newly assigned weights.
For this test in which fractional weights are allowable, non-
integer values for the DOF are possible.

If after the 3-o test has been implemented, Prob(¥?) <
1 percent or v < 0.0, then the next failure detection test is
used. The third test, for measurement consistency, is more
computationally intensive than are the two previous tests
and is intended as a catch-all test. Consistency refers to
equality of the residual magnitudes. For this test, the weight
of the residual with the magnitude farthest from the me-
dian residual magnitude is set to zero. All other weights
are set to 1. The weighted value of %2 is evaluated and
the result is compared against Prob(?) for N — 7 DOF.
If Prob(%*) > 1 percent, the algorithm drops out of the
failure testing mode and enters the iteration mode using the
newly assigned weights. If Prob(x?) < 1 percent, then the
weight of the residual in which the magnitude is next far-
thest from the median is set to zero. The weighted value of
%? is again computed and the results are compared against
Prob(%*) for N — 8 DOF. Again if Prob(x?) > 1 pet-
cent, the algorithm drops out of the testing loop; otherwise,
the process is repeated again until 4 < 0.

If 4y < 0 at the end of the consistency test cycle, then ei-
ther the hold-last-value or reset sub-modes will be entered.
The hold-last-value sub-mode is entered first. In this mode,
the least-squares regression is bypassed and the value of the
airdata state remains unchanged. After skipping the regres-
sion, all of the weights are set to 1.0, the hold index (which
indicates the number of consecutive holds) is incremented,
and the algorithm returns to the nominal mode for the next
data frame. The hold-last-value sub-mode allows small sec-
tions of corrupt input data to be passed over without trigger-
ing algorithm divergence or nuisance resets.



If the hold-last-value mode has been entered for a spec-
ified number (default 20) of consecutive data frames, then
the algorithm has likely diverged or converged to a false so-
lution, and the reset sub-mode is entered. This condition
corresponds to the location of marker 4 in Fig. 3. In this
case, the residuals are so far from the true minimal values
that the algorithm must be reinitialized using a new set of
starting values. Rough airdata estimates are evaluated using
the triples algorithm discussed earlier. After the algorithm
is relinearized about the starting values, it is iterated to con-
vergence. When convergence is reached, all weights are set
to 1.0, the hold index is set to zero, and the nominal mode
is entered.

Application to High-Angle-of-Attack Flush
Airdata Sensing Flight Data

Figures 8(a) and 8(b) show applications of the failure de-
tection and fault management techniques using F-18 HARV
flight data. In the first case, the incoming pressures experi-
ence a scries of large magnitude data spikes which cause
catastrophic algorithm faijlure. 1In the second case, the
data from several pressure channels experienced data steps
caused by a malfunction of an experimental signal condi-
tioning circuit designed to zero out the DC-level reading of
the pressure transducers. These steps cause the algorithm to
converge to a false solution.

Figure 8(a) shows the measured pressure data. When
the data spikes are run unprotected through the FADS al-
gorithm, catastrophic divergence results. Results from the
diverged algorithm are presented in Fig, 8(b) where the com-
puted angle-of-attack time history is plotted. Although the
data values prior to divergence are valid, their values are
not distinguishable in this figure. In Fig. 8(c), the pressure
data along with the HI-FADS curve fit are plotted against
incidence angle (#). The curve fit has little relationship to
the ESP data and the large residuals (the distances from the
curve fit to the ESP data) are indicative of algorithm diver-
gence. Clearly the diverged airdata estimates are meaning-
less and this fact is reflected by the excessively large %2
value. For the diverged data, the ¥? time history is pre-
sented in Fig. 8(d). After the first data spike, x* assumes
very large values, indicating catastrophic divergence.

When the x? criterion is used to test for algorithm diver-
gence and the fault management mode is evoked, the algo-
rithm behaves as intended. For the first example, the incom-
ing data spikes tripped the reason limits. The corresponding
weights of the pressure values exceeding these limits were
set to zero. The resulting computed angle-of-attack time his-
tory is presented in Fig. 8(e). In Fig. 8(f), the pressure data
and the HI-FADS curve fit are plotted against 6. The curve
fit neatly matches the measured data. The small residuals are
indicative of algorithm convergence and this is reflected by
the small %? value. For the divergence protected algorithm,
the computed %2 time history is presented in Fig. 8(g). Only

at the points of the spikes does the ¥* value become large
and cause the fault management mode to trigger.

In the second example, the signal conditioning circuit in-
troduced small but significant steps in the incoming pressure
data. The corrupted pressure data time histories are pre-
sented in Fig. 9(a). If the corrupted data are passed to the
HI-FADS algorithm unprotected, the algorithm converges
to an erroneous solution and does not return. The angle-of-
attack time history is presented in Fig. 9(b). In contrast to
the earlier case, when the fault management mode is evoked,
the bit-dropout residuals do not violate the reason limits and
must rely on the 3-o criterion to detect the failure. In this
case, the relative weighting scheme is initiated to protect the
algorithm against divergence. The resulting angle-of-attack
output is presented in Fig. 9(c). Here the algorithm con-
verges and proceeds as normal, with the effects of the data
dropout being indistinguishable. The computed x?* time his-
tory is presented in Fig. 9(d). At the x? large values, a x?
test failure was triggered and the fault management mode
was initiated. The method clearly worked as expected.

No actual data failures which required the algorithm to
enter the consistency tests or trip the hold-last-value or re-
set sub-modes were experienced during the HI-FADS flight
tests. The validity of these sub-modes was verified through
extensive simulation. Results of this validation and verifi-
cation effort are beyond the scope of this paper and will not
be presented.

Summary and Concluding Remarks

A prototype nonintrusive airdata system was installed and
flight tested on the F-18 High Alpha Research Flight Ve-
hicle at the NASA Dryden Flight Research Facility. This
system used a matrix of pressure orifices arranged in con-
centric circles on the nose of the vehicle to estimate the air-
data parameters angle of attack, angle of sideslip, dynamic
pressure, and static pressure. The high-angle-of-attack flush
airdata sensing system hardware and regression algorithm
were discussed.

Results indicated that if a large disturbance in a measured
pressure value passed undetected into the HI-FADS algo-
rithm, the resulting state perturbation could dump the algo-
rithm into a false minimum and result in algorithm diver-
gence or convergence to a false answer. The need for algo-
rithm protection was discussed. Failure detection and fault
management techniques based on x? analysis and weighted
least squares were developed. This paper demonstrated how
system and individual port failures may be detected using x*
analysis. Once identified, the effects of failures are elim-
inated using weighted least squares. Data obtained from
the High Alpha Research Vehicle flight tests were used to
demonstrate the techniques.

Use of the developed failure detection and fault manage-
ment techniques allow a single pressure measurement ma-
trix to be multiply redundant. As illustrated with flight data,



the x* method allows several of the pressure measurements
to fail simultaneously with little or no degradation of the re-
sulting airdata computations The utility of the x? method
as an indicator of the overall system health is that it requires
little overhead for fault detection. Failure tests on individual
ports need to be performed only when a x? test failure has
occurred. This allows the algorithm to operate in a nominal
mode in which only one iteration and no individual pressure
failure checking is required. This provides a much greater
computational throughput than would be possible if multiple
iterations and individual pressure checking were required at
each data frame. The increased throughput will be valuable
for feedback systems in which the maximum available air-
data rate is desired.
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Figure 1. Scematic of HI-FADS nosecap showing coordinate definitions and port locations.
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(e). HI-FADS angle-of-attack time history, divergence protected.
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